Abstract

Piezoelectric polyvinylidene fluoride (PVDF) has been widely utilized in flexible and self-powered tactile sensors, which require high ferroelectricity of polar phase PVDF. Herein, we demonstrate self-powered piezoelectric e-skins with high sensitivity and broad sensing range based on 3D porous structures of MXene (Ti 3 C 2 T x )/PVDF. MXene was used as a nucleation agent to increase the ferroelectric properties of PVDF. This was carried out considering its 2D geometry and abundant surface functional groups that facilitate intermolecular hydrogen bonding between the surface functional groups of MXene and the CH 2 group of PVDF. In addition, porous structures can increase the variation in contact area and localized stress concentration in response to applied pressure. This further enhances the piezoelectric sensitivity. Owing to structural deformation and localized stress concentration, the piezoelectric sensitivity of porous MXene/PVDF e-skin is 11.9 and 1.4 nA kPa −1 for low (< 2.5 kPa) and high (2.5–100 kPa) pressure ranges, respectively. These are 31 and 3.7 times higher, respectively, than that of planar MXene/PVDF e-skin (0.4 nA kPa −1 for <100 kPa). In addition, porous MXene/PVDF e-skin exhibits a broad sensing range of up to 100 kPa, and stable sensing performance (5000 repetitions). Our piezoelectric porous MXene/PVDF e-skins enable the monitoring of high-frequency dynamic signals such as acoustic sound waves as well as low-frequency radial artery pulses. In particular, the detection of high-frequency vibrations from sliding friction enables our sensor array to perceive various surface textures with different roughness and moduli, as well as the spatial distribution of words embossed on surfaces. This demonstrates its substantial potential for application in wearable devices, prosthetic limbs, robotics, and healthcare monitoring devices. MXene with a large specific surface area and abundant functional groups can be used as a heterogeneous nucleation agent to induce crystallization of the polar β-phase and enhance the ferroelectric properties of PVDF, which enables the monitoring of high-frequency dynamic signals such as acoustic sound waves as well as low-frequency radial artery pulses. In particular, the detection of high-frequency vibrations from sliding friction enables our sensor array to perceive various surface textures with different roughness and moduli, as well as the spatial distribution of words embossed on surfaces. • High-performance piezoelectric skin sensor is demonstrated using 3D porous structures of MXene (Ti 3 C 2 T x )/PVDF composites. • MXene is used as a nucleation agent to induce polar β-phase and enhance the ferroelectric properties of PVDF. • MXene/PVDF sensor perceives various surface textures as well as the spatial distribution of words embossed on surfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call