Abstract
Iontronic pressure sensors hold significant potential to emerge as vital components in the field of flexible and wearable electronics, addressing a variety of applications spanning wearable technology, health monitoring systems, and human-machine interactions. This study introduces a novel iontronic pressure sensor structure based on a seamlessly deposited Ti3C2Tx MXene layer onto highly porous melamine foam as parallel plate electrodes and an ionically conductive electrolyte of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide/thermoplastic polyurethane coupled with carbon cloth as current collecting layers for improved sensitivity and high mechanical stability of more than 7000 cycles. MXene-deposited melamine foam-based iontronic pressure sensors (MIPS) showed a high sensitivity of 5.067 kPa-1 in the range of 45-60kPa and a fast response/recovery time of 28/18ms, respectively. The high sensitivity, high mechanical stability, and fast response/recovery time of the designed sensor make them highly promising candidates for real-time body motion monitoring. Moreover, sensors are employed as a smart numpad for integration into advanced ATM security systems utilizing machine learning algorithms. This research marks a significant advance in iontronic pressure sensor technology, offering promising avenues for application in wearable electronics and security systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.