Abstract

Silicon, an attractive anode material, suffers fast capacity fading due to the electrical isolation from massive volumetric expansion upon cycling. However, it holds a high theoretical capacity and low operation voltage in its practical application. In this study, a new water-based binder, MXene clay/hollow core-shell acrylate composite, was synthesized through an in situ emulsion polymerization technique to alleviate the fast capacity fading of the silicon anode efficiently. The efficient introduction of conductive MXene clay and the hollow core-shell structure, favorable to electron and ion transport in silicon-based electrodes, gives a novel conceptual design of the binder material. Such a strategy could alleviate electrical isolation after cycling and promises better electrochemical performance of the high-capacity anodes. The effect of the MXene introduction and hollow core-shell on the binder performance is thoroughly investigated using various characterization tools by comparison with no MXene-containing, core-shell acrylate, and commercial styrene-butadiene latex binders. Consequently, the silicon-based electrode containing the MXene clay/hollow core-shell acrylate binder exhibits a high capacity retention of 1351 mAh g-1 at 0.5C after 100 cycles and good rate capability of over 1100 mAh g-1 at 5C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.