Abstract

Textile-based sensors in the form of a wearable computing device that can be attached to or worn on the human body not only can transmit information but also can be used as a smart sensing device to access the mobile internet. These sensors represent a potential platform for the next generation of human-computer interfaces. The continuous emergence of new conductive materials is one of the driving forces for the development of textile sensors. Recently, a two-dimensional (2D) MXene material with excellent performance has received extensive attention due to its high conductivity, processability, and mechanical stability. In this paper, the synthesis of MXene materials, the fabrication of conductive textiles, the structural design of textile sensors, and the application of MXene-based textile sensors in the wearable field are reviewed. Furthermore, from the perspective of MXene preparation, wearability, stability, and evaluation standards, the difficulties and challenges of MXene-based textile sensors in the field of wearable applications are summarized and prospected. This review attempts to strengthen the connection between wearable smart textiles and MXene materials and promote the rapid development of wearable MXene-based textile sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.