Abstract

The development of triboelectric nanogenerator (TENG) technology which can directly convert ambient mechanical energy into electric energy may affect areas from green energy harvesting to emerging wearing electronics. And, the material of triboelectric layer is critical to the mechanical robustness and electrical output characteristics of the TENGs. Herein, a MXene enhanced electret polytetrafluoroethylene (PTFE) film with a high mechanical property and surface charge density is developed. The MXene/PTFE composite film was synthesized by spraying and annealing treatment. With the doping of MXene, the crystallinity of composite film could be tuned, leading to an enhancement in the tensile property of 450% and reducing the wear volume about 80% in the friction test. Furthermore, the as-fabricated TENG with this composite film outputs 397 V of open-circuit voltage, 21 µA of short-circuit current, and 232 nC of transfer charge quantity, which are 4, 6, and 6 times higher than that of the TENG made by pure PTFE film, respectively. Therefore, this work provides a creative strategy to simultaneously improve the mechanical property and electrical performance of the TENGs, which have great potential in improving device stability under a complex mechanical environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.