Abstract

Pathogenic bacteria are associated with high morbidity rates and present significant diagnostic challenges in terms of rapid detection. This study introduces a magnetic separation-based electrochemical biosensor for the detection of Methicillin-resistant Staphylococcus aureus (MRSA). Vancomycin (Van) was used to modify on the surface of polyethyleneimine (PEI) mediated MBs (MBs-PEI-Van) for separation and enrichment of MRSA. The MBs-PEI-Van shown a satisfactory stability and applicability with capture effective (CE) > 85% in both PBS and cerebrospinal fluid (CSF) samples. MXene@Au with controllable size of AuNPs was synthesized by a self-reduction method and employed to modify the glassy carbon electrode (GCE). Immunoglobulin G (IgG) was loaded onto the modified electrode to immobilize MRSA, and ferroceneboronic acid (Fc-BA) was used as a probe for quantitative determination. The differential pulse voltammetry (DPV) current was plotted against the concentration of MRSA from 3.8 × 101 to 3.8 × 107 CFU/mL with a limit of detection (LOD) of 3.8 × 101 CFU/mL. In addition, MRSA was successfully detected in spiked CSF samples with satisfactory recoveries (94.35–107.81 %) and validation results (RSD < 11 %). Overall, this study presents a promising method for the detection of MRSA, with the potential to be further developed into a universal pathogen detection method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call