Abstract

Textile wastes rapidly grow into a challenge when a significant portion of them are processed by landfilling or incineration, leading to hazardous solid and volatile pollutants. This work investigated the utilization of wasted cellulose fiber by recycling it with calcium alginate fiber into a fireproof composite filler as a circular economy strategy, followed by the modification with MXene dispersion to further enhance its fire resistance and offer it the electromagnetic interference shielding ability. A comprehensive investigation elucidated the flame retardant mechanism of the composite felt via studying its combustion behavior, the microstructural morphology of residue char, and the gasous compounds produced. The results indicated that this composite felt generated a large number of nonflammable gas species and fibrous residue char, serving as a natural barrier to impede the fuel supply and suppress heat diffusion, thereby endowing the composite felt with an outstanding fire retardant performance and reduced carbon footprint. Compared to other textile waste recycling processes, the opening-carding-needling punch technique employed in this study was more energy-efficient and environmentally friendly. The recycling of waste cellulose fiber into functional fireproof composites not only extended the practical applications of waste resources but also mitigated the negative environmental impact of textile disposal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.