Abstract

Searching for reversible hydrogen storage materials operated under ambient conditions is a big challenge for material scientists and chemists. In this work, using density functional calculations, we systematically investigated the hydrogen storage properties of the two-dimensional (2D) Ti2C phase, which is a representative of the recently synthesized MXene materials ( ACS Nano 2012 , 6 , 1322 ). As a constituent element of 2D Ti2C phase, the Ti atoms are fastened tightly by the strong Ti-C covalent bonds, and thus the long-standing clustering problem of transition metal does not exist. Combining with the calculated binding energy of 0.272 eV, ab initio molecular dynamic simulations confirmed the hydrogen molecules (3.4 wt % hydrogen storage capacity) bound by Kubas-type interaction can be adsorbed and released reversibly under ambient conditions. Meanwhile, the hydrogen storage properties of the other two MXene phases (Sc2C and V2C) were also evaluated, and the results were similar to those of Ti2C. Therefore, the MXene family including more than 20 members was expected to be a good candidate for reversible hydrogen storage materials under ambient conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.