Abstract

A combinatorial problem concerning the maximum size of the (Hamming) weight set of an $$[n,k]_q$$ linear code was recently introduced. Codes attaining the established upper bound are the Maximum Weight Spectrum (MWS) codes. Those $$[n,k]_q$$ codes with the same weight set as $$\mathbb {F}_q^n$$ are called Full Weight Spectrum (FWS) codes. FWS codes are necessarily “short”, whereas MWS codes are necessarily “long”. For fixed k, q the values of n for which an $$[n,k]_q$$ -FWS code exists are completely determined, but the determination of the minimum length M(H, k, q) of an $$[n,k]_q$$ -MWS code remains an open problem. The current work broadens discussion first to general coordinate-wise weight functions, and then specifically to the Lee weight and a Manhattan like weight. In the general case we provide bounds on n for which an FWS code exists, and bounds on n for which an MWS code exists. When specializing to the Lee or to the Manhattan setting we are able to completely determine the parameters of FWS codes. As with the Hamming case, we are able to provide an upper bound on $$M({\mathscr {L}},k,q)$$ (the minimum length of Lee MWS codes), and pose the determination of $$M({\mathscr {L}},k,q)$$ as an open problem. On the other hand, with respect to the Manhattan weight we completely determine the parameters of MWS codes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.