Abstract

To encapsulate the hydrophobic camptothecin (CPT) into hydrogel matrix with a high loading amount, a supramolecular hydrogel hybrided with multi-walled carbon nanotubes (MWNTs) was developed by the host-guest interactions and used for loading and delivering CPT. Firstly, carboxylated MWNTs were modified by polyethylene glycol monomethyl ether (MPEG), which resulted in the water-dispersed MPEG-MWNTs. Then α-cyclodextrin (α-CD) was mixed with MPEG-MWNTs and the hybrid supramolecular hydrogel was fabricated by the inclusion interactions between α-CD and MPEG. The used MPEG not only dispersed MWNTs in aqueous solution, but also functioned as hydrogel matrix by interacting with α-CD. The gelation time for the sol-gel transition and rheological properties of the resultant hydrogels were studied. Due to the excellent application of MWNTs in drug delivery, hydrophobic CPT could be loaded into the hydrogel matrix by a higher amount compared with micelles. By in vitro release and cell viability tests, it was found that the encapsulated CPT could exhibit a controlled and sustained release behavior as well as sustained antitumor efficacy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call