Abstract

Abstract In this paper, a structure-conductive carbon fiber reinforced composites (CFRPs) were fabricated. Its mechanical and electrical properties were characterized. The contribution of its modifier, multi-wall carbon nanotube (MWCNT) to the overall EMS (electromagnetic shielding) effectiveness of CFRP was analyzed. To simultaneously enhance the mechanical strength and electrical conductivity, the MWCNT was well dispersed into aerospace grade epoxy base resin. Afterward, The MWCNT carrying resin was impregnated over unidirectional fiber yarns to produce unidirectional prepreg, and MWCNT modified CFRP (MWCNT-CFRP) laminates were molded in an autoclave. The static mechanical strength, electrical conductivities, and electromagnetic shielding (EMS) effectiveness of MWCNT-CFRPs were tested. Relative analysis verified the conductivity dependence of their EMS performance, indicating the promising prospect of MWCNT-CFRPs for EMS structural composite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.