Abstract

Simple SummaryMicrovascular invasion is an important indicator for reflecting the prognosis of hepatocellular carcinoma, but the traditional diagnosis requires a postoperative pathological examination. This study is the first to propose an end-to-end deep learning architecture for predicting microvascular invasion in hepatocellular carcinoma by collecting retrospective data. This method can achieve noninvasive, accurate and efficient preoperative prediction only through the patient’s radiomic data, which is very beneficial to doctors for clinical decision making in HCC patients.Microvascular invasion (MVI) in hepatocellular carcinoma (HCC) directly affects a patient’s prognosis. The development of preoperative noninvasive diagnostic methods is significant for guiding optimal treatment plans. In this study, we investigated 138 patients with HCC and presented a novel end-to-end deep learning strategy based on computed tomography (CT) radiomics (MVI-Mind), which integrates data preprocessing, automatic segmentation of lesions and other regions, automatic feature extraction, and MVI prediction. A lightweight transformer and a convolutional neural network (CNN) were proposed for the segmentation and prediction modules, respectively. To demonstrate the superiority of MVI-Mind, we compared the framework’s performance with that of current, mainstream segmentation, and classification models. The test results showed that MVI-Mind returned the best performance in both segmentation and prediction. The mean intersection over union (mIoU) of the segmentation module was 0.9006, and the area under the receiver operating characteristic curve (AUC) of the prediction module reached 0.9223. Additionally, it only took approximately 1 min to output a prediction for each patient, end-to-end using our computing device, which indicated that MVI-Mind could noninvasively, efficiently, and accurately predict the presence of MVI in HCC patients before surgery. This result will be helpful for doctors to make rational clinical decisions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.