Abstract

In a large-scale sharded blockchain, transactions are processed by a number of parallel committees collaboratively. Thus, the blockchain throughput can be strongly boosted. A problem is that some groups of blockchain nodes consume large latency to form committees at the beginning of each epoch. Furthermore, the heterogeneous processing capabilities of different committees also result in unbalanced consensus latency. Such unbalanced two-phase latency brings a large cumulative age to the transactions waited in the final committee. Consequently, the blockchain throughput can be significantly degraded because of the large transaction's cumulative age. We believe that a good committee-scheduling strategy can reduce the cumulative age, and thus benefit the blockchain throughput. However, we have not yet found a committee-scheduling scheme that works for accelerating block formation in the context of blockchain sharding. To this end, this paper studies a fine-balanced tradeoff between the transaction's throughput and their cumulative age in a large-scale sharded blockchain. We formulate this tradeoff as a utility-maximization problem, which is proved NP-hard. To solve this problem, we propose an online distributed Stochastic-Exploration (SE) algorithm, which guarantees a near-optimal system utility. The theoretical convergence time of the proposed algorithm as well as the performance perturbation brought by the committee's failure are also analyzed rigorously. We then evaluate the proposed algorithm using the dataset of blockchain-sharding transactions. The simulation results demonstrate that the proposed SE algorithm shows an overwhelming better performance comparing with other baselines in terms of both system utility and the contributing degree while processing shard transactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call