Abstract

In recent times, fake news and misinformation have had a disruptive and adverse impact on our lives. Given the prominence of microblogging networks as a source of news for most individuals, fake news now spreads at a faster pace and has a more profound impact than ever before. This makes detection of fake news an extremely important challenge. Fake news articles, just like genuine news articles, leverage multimedia content to manipulate user opinions but spread misinformation. A shortcoming of the current approaches for the detection of fake news is their inability to learn a shared representation of multimodal (textual + visual) information. We propose an end-to-end network, Multimodal Variational Autoencoder (MVAE), which uses a bimodal variational autoencoder coupled with a binary classifier for the task of fake news detection. The model consists of three main components, an encoder, a decoder and a fake news detector module. The variational autoencoder is capable of learning probabilistic latent variable models by optimizing a bound on the marginal likelihood of the observed data. The fake news detector then utilizes the multimodal representations obtained from the bimodal variational autoencoder to classify posts as fake or not. We conduct extensive experiments on two standard fake news datasets collected from popular microblogging websites: Weibo and Twitter. The experimental results show that across the two datasets, on average our model outperforms state-of-the-art methods by margins as large as ~ 6% in accuracy and ~ 5% in F1 scores.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.