Abstract

A set of k orthonormal bases of Cd is called mutually unbiased if |⟨e,f⟩|2=1/d whenever e and f are basis vectors in distinct bases. A natural question is for which pairs (d,k) there exist k mutually unbiased bases in dimension d. The (well-known) upper bound k≤d+1 is attained when d is a power of a prime. For all other dimensions it is an open problem whether the bound can be attained. Navascués, Pironio, and Acín showed how to reformulate the existence question in terms of the existence of a certain C∗-algebra. This naturally leads to a noncommutative polynomial optimization problem and an associated hierarchy of semidefinite programs. The problem has a symmetry coming from the wreath product of Sd and Sk.We exploit this symmetry (analytically) to reduce the size of the semidefinite programs making them (numerically) tractable. A key step is a novel explicit decomposition of the Sd≀Sk-module C([d]×[k])t into irreducible modules. We present numerical results for small d,k and low levels of the hierarchy. In particular, we obtain sum-of-squares proofs for the (well-known) fact that there do not exist d+2 mutually unbiased bases in dimensions d=2,3,4,5,6,7,8. Moreover, our numerical results indicate that a sum-of-squares refutation, in the above-mentioned framework, of the existence of more than 3 MUBs in dimension 6 requires polynomials of total degree at least 12.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.