Abstract
G-Quadruplex and i-motif are tetraplex structures that may form in opposite strands at the same location of a duplex DNA. Recent discoveries have indicated that the two tetraplex structures can have conflicting biological activities, which poses a challenge for cells to coordinate. Here, by performing innovative population analysis on mechanical unfolding profiles of tetraplex structures in double-stranded DNA, we found that formations of G-quadruplex and i-motif in the two complementary strands are mutually exclusive in a variety of DNA templates, which include human telomere and promoter fragments of hINS and hTERT genes. To explain this behavior, we placed G-quadruplex- and i-motif-hosting sequences in an offset fashion in the two complementary telomeric DNA strands. We found simultaneous formation of the G-quadruplex and i-motif in opposite strands, suggesting that mutual exclusivity between the two tetraplexes is controlled by steric hindrance. This conclusion was corroborated in the BCL-2 promoter sequence, in which simultaneous formation of two tetraplexes was observed due to possible offset arrangements between G-quadruplex and i-motif in opposite strands. The mutual exclusivity revealed here sets a molecular basis for cells to efficiently coordinate opposite biological activities of G-quadruplex and i-motif at the same dsDNA location.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.