Abstract

Aloe vera, a short-stemmed shrub is described as a “wonder plant”, due to its vast uses in various medical products. Since many decades, extensive research has revealed that the pharmacological active ingredients are distributed in both the gel and rind of the Aloe vera leaves. A. vera is very popular in cosmetic and pharmaceutical industries and it is needed in large quantities with higher fractions of important constituents. To satisfy the market demand, intervention of microbial community seems to be a promising approach, which helps to increase the growth and metabolites along with plant fitness. Piriformospora indica is a root colonizing endophytic fungus, having unique plant growth-promoting properties. It helps the plant to acquire more nutrients from soil even under extreme physical and nutrient stress conditions. It interacts with a wide range of hosts. Interaction of P. indica with A. vera resulted in overall increase in plant biomass and greater shoot and root length, as well as number of shoots and roots as compared to control under both in vitro and in vivo environment conditions. Apart from that, the photosynthetic pigments (Chl a, Chl b and total Chl) and aloin content were observed significantly higher in A. vera plantlets colonized with symbiotic endophyte. The antioxidant activities were also tested and found significantly higher as compared to control plants. This imparts the potential of P. indica, to resist the plants against phyto-pathogenic microbes. P. indica has been proved as a potential candidate to enhance the biomass production along with various value additions in the form of active ingredients in A. vera.

Highlights

  • Aloe vera is a hardy, perennial, tropical succulent plant with properties like, drought resistant

  • P. indica has been proved as a potential candidate to enhance the biomass production along with various value additions in the form of active ingredients in A. vera

  • After successful colonization of P. indica, it facilitates the transfer/supply of nutrients like nitrogen and phosphorus to the roots of host plant which stimulates the cascade of biological reactions to synthesize various proteins, which participated in growth promotion of plant, enhancement of secondary metabolites, boosting immune system to trigger the defense mechanism against various biotic and abiotic stresses to increase the plant fitness [13] [19]

Read more

Summary

Introduction

Aloe vera is a hardy, perennial, tropical succulent plant with properties like, drought resistant. Studies have revealed that there are 75 ingredients present in the Aloe leaf and have many nutraceutical properties These chemical compounds are divided into following categories: Anthraquinones: Almost 12 varieties of anthraquinones; Aloin, Isobarbaloin, Anthracene, Emodin, Ester of Cinnamonic acid, Chrysophanic acid, Barbaloin, Anthranol, Aloetic acid, Aloe Emodin, Ethereal oil and Resistannol are present in A. vera sap. They contain powerful antibacterial, antifungal and virucidal properties. Essential fatty Acids: There are 4 kinds of plant steroids present in A. vera; lupeol, LDL cholesterol, β-sisosterol and campesterol All of these have anti-inflammatory properties and helps in wound cure. An inert polysaccharide lignin from A. vera is used in skin medicines to enhance the penetrative effect of the other ingredients inside the skin tissues [2]

Mechanism of Actions
Piriformospora indica: A Mutualistic Plant Growth Promoter
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.