Abstract
Protein secretion in gram-negative bacteria is often dependent on the general secretory pathway (GSP). In Pseudomonas aeruginosa, this system requires at least 12 Xcp (Gsp) proteins, which are proposed to constitute a multiprotein complex localized in the bacterial envelope. Hitherto, little was known about the mutual interactions between Xcp proteins. In this study, mutants affected in the xcpZ gene encoding a bitopic inner-membrane protein were analysed to investigate the role of this protein in the architecture of the secretory machinery. The absence of XcpZ resulted in a decreased amount of XcpY. Reciprocally, XcpZ was not detectable in a xcpY mutant, demonstrating a mutual stabilization of these two proteins. These results strongly suggest that XcpZ and XcpY interact within the functional secretory apparatus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.