Abstract

We apply the concepts of relative dimensions and mutual singularities to characterize the fractal properties of overlapping attractor and repeller in chaotic dynamical systems. We consider one analytically solvable example (a generalized baker's map); two other examples, the Anosov-Möbius and the Chirikov-Möbius maps, which possess fractal attractor and repeller on a two-dimensional torus, are explored numerically. We demonstrate that although for these maps the stable and unstable directions are not orthogonal to each other, the relative Rényi and Kullback-Leibler dimensions as well as the mutual singularity spectra for the attractor and repeller can be well approximated under orthogonality assumption of two fractals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.