Abstract

We have investigated properties of heavily-B-doped diamond (HBD) films homoepitaxially grown with boron-to-carbon (B/C) mole ratios ranging from 1000 to 5000ppm in the source gas mainly by using X-Ray diffraction (XRD), cathodoluminescence (CL), and Hall effect measurements. Each HBD layer was deposited on a vicinal (001) substrate of high-pressure/high-temperature synthesized Ib-type diamond with 5° misorientation angle by means of high-power-density microwave-plasma chemical-vapor-deposition method with a source gas composed of 4% CH4 in H2 and H2-diluted B(CH3)3. XRD data indicated that the lattice constant of the B-doped layer slightly decreased for the B/C ratios≤3000ppm while slightly increasing for that of 5000ppm, suggesting that for the latter HBD sample a part of the incorporated B atoms behaved differently from the remaining other B atoms. By contrast the Hall data indicated that all the HBD samples had a degenerate feature only at temperatures well below room temperature (RT), above which a semiconducting feature was evident, and that the density of the degenerate holes steeply increased from 1.3×1019 to 1.2×1021cm−3 with increases in the incorporated B density, [B], from 1.2×1020 to 5.9×1020cm−3. This drastic change in the hole density strongly suggested the presence of a [B]-dependent impurity band. Their evident near-band-edge CL spectra taken at RT and 85K demonstrated that radiative transition features in the HBD layers considerably varied for the B/C ratios studied. The CL peaks were consistently assigned by assuming both the presence of an impurity band and a slight bandgap shrinkage. These observed features are discussed in relation to the energy separation between the low-mobility impurity band assumed and the valence band in the high-quality HBD layer which are not merged in energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.