Abstract

Mutual orientation effects on the rate of nonadiabatic electron transfer between several diporphyrin pairs of experimental interest are examined. The electronic matrix element for electron transfer is calculated within a one-electron spheroidal model for a variety of states and orientations which are relevant to both biological and synthetic electron-transfer systems. Both the mutual orientation of the pairs and the nodal structure of the donor and acceptor orbitals can have large effects on calculated rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.