Abstract

AbstractKristiansen and Murwanashyaka recently proved that Robinson arithmetic, Q, is interpretable in an elementary theory of full binary trees, T. We prove that, conversely, T is interpretable in Q by producing a formal interpretation of T in an elementary concatenation theory QT+, thereby also establishing mutual interpretability of T with several well-known weak essentially undecidable theories of numbers, strings, and sets. We also introduce a “hybrid” elementary theory of strings and trees, WQT*, and establish its mutual interpretability with Robinson’s weak arithmetic R, the weak theory of trees WT of Kristiansen and Murwanashyaka, and the weak concatenation theory WTCε of Higuchi and Horihata.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.