Abstract

Aging pathogenesis involves non-enzymatic modifications of proteins; protein oxidation, glycation and their interactions have aroused a particular interest. Possible interrelations between oxidation and glycation have been evaluated in vitro: bovine serum albumin was oxidized by gamma-irradiation and then exposed to in vitro glycation. Fluorescence modifications induced by radiolytic oxidation and glycation were similar and tended to be additive. Both non-enzymatic processes provoked a loss of free sulfhydryl groups and a strong increment of protein carbonyl content: this supports that glycation can act through oxidative mechanisms. The observed rearrangement of amino groups after irradiation could predispose proteins to glycation attacks. Protein peroxides generated during irradiation appear able to give birth to further protein modifications leading to the generation of carbonyl groups and to interact with monosaccharides, probably stimulating their autoxidation and in turn glycative protein damage. Glycation increases the oxidation-mediated structural damage revealed by SDS-PAGE. Therefore our data support the hypothesis of mutual enhancement between oxidation and glycation of proteins and suggest possible molecular mechanisms of interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.