Abstract

OFDM and other multicarrier waveforms are in general very sensitive to RF non-idealities, such as phase noise and IQ imbalance, of transmitting and receiving devices. Extensive work has been carried out in the open literature in analyzing the performance of OFDM radio link under such RF impairments in terms of detection error rate and mostly concentrating on one impairment at a time. However, there is only very limited work on analytical investigations of mutual information and rate loss expressions, the heart of communication theory, as functions of RF impairment levels. In this article, we derive two closed-form mutual information expressions, in the form of infinite series representation, for an arbitrary subcarrier of a general OFDM radio link impaired with transceiver phase noise and IQ imbalance in frequency-selective Rayleigh distributed block-fading radio channel, covering both uncorrelated as well as fully correlated mirror subcarrier scenarios. We also show that the mutual information saturates to a finite value due to the inherent RF impairments even in the case that the symbol-to-noise ratio approaches infinity. Extensive comparisons with results obtained from full OFDM radio link simulations are also provided to illustrate and verify the accurate match between analytical and simulated mutual information behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.