Abstract
We study statistical characterization of the many-body states in exactly solvable models with internal degrees of freedom. The models under consideration include the isotropic and anisotropic Heisenberg spin chain, the Hubbard chain, and a model in higher dimensions which exhibits the Mott metal-insulator transition. It is shown that the ground state of these systems is all described by that of a generalized ideal gas of particles (called exclusons) which have mutual exclusion statistics, either between different rapidities or between different species. For the Bethe ansatz solvable models, the low temperature properties are well described by the excluson description if the degeneracies due to string solutions with complex rapidities are taken into account correctly. {For} the Hubbard chain with strong but finite coupling, charge-spin separation is shown for thermodynamics at low temperatures. Moreover, we present an exactly solvable model in arbitrary dimensions which, in addition to giving a perspective view of spin-charge separation, constitutes an explicit example of mutual exclusion statistics in more than two dimensions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.