Abstract

Kinetic equations for nonequilibrium electrons and optical phonons are constructed and solved for the case in which the interaction between these particles is the primary mechanism for the relaxation of the electron energy and quasimomentum. The calculations reflect the circumstance that for the optical phonons the equivalent primary relaxation mechanism is the interaction with acoustic phonons (which are at equilibrium in this case). Constitutive equations are derived for polar semiconductors which reflect the mutual entrainment of electrons and optical phonons. Energy balance equations, which determine the temperatures of these particles, are also derived. These temperatures are generally different from each other and from the reservoir temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call