Abstract

Abstract Tide-induced near-inertial internal waves (NIWs) are generated by tide-topography interaction and are energized by internal tides through triadic resonant interaction of internal waves. They are located above topography and could be in close contact with wind-induced NIWs when the topography is a tall ridge, like in the Luzon Strait of the northern South China Sea (SCS). A natural question arises as to whether there is significant interaction between wind- and tide-induced NIWs. By using moored velocity observations, satellite-tracked surface drifter dataset, and idealized numerical simulations, we find that in the presence of tide-induced NIWs, the wind can inject slightly more near-inertial energy (NIE), while in the presence of wind-induced NIWs, significantly more tidal energy is transferred to NIWs. Thus, wind- and tide-induced NIWs can mutually enhance each other, producing more NIE than a linear superposition of that generated by wind and tide forcing alone. Increasing wind intensity and tidal excursion lead to saturation of NIE enhancement, while a taller ridge leads to stronger enhancement. The high mixed-layer NIE near Luzon Strait is mostly generated by the wind, while the mutual enhancement between wind- and tide-induced NIWs can further enhance this pattern. The interaction between wind- and tide-induced NIWs leads to an enhancement of 25% more NIE. If tide-induced NIWs are neglected, as is usually the case in the estimation of NIE, the total NIE will be underestimated by almost 50%. This might imply that tide-induced NIWs are important for the energetics of NIWs in Luzon Strait.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call