Abstract

Simultaneous removal of coexisting metals and dyes from industrial wastewaters is challenging, and the mutual effects behind the co-adsorption of these pollutants remain unclear. Herein, interlayer-expanded MoS2 (IE-MoS2) nanosheets prepared by a one-pot simple and scalable method were tested to simultaneously remove toxic metals and cationic dyes. The adsorption capacities of IE-MoS2 nanosheets were 499, 423, 500, 355, and 276mg/g for Pb(II), Cu(II), methylene blue, malachite green, and rhodamine B, respectively, in a mono-contaminant system. Interestingly, the sequestration amount of Pb(II) was dependent on the concentrations of dyes in the binary Pb(II)-dye systems, while uptake of cationic dyes was almost not influenced by coexisting Pb(II). The simultaneous adsorption mechanism was further confirmed by spectroscopic methods. The IE-MoS2 nanosheets were easily regenerated and reused for six adsorption-desorption cycles without structure destruction, thus avoiding the potential hazards of nanomaterial to the ecosphere. More interestingly, high-efficiency uptake of Pb(II) from intentionally contaminated natural water and model textile effluent was obtained by using a column filled with IE-MoS2 nanosheets. In summary, IE-MoS2 nanosheets with facile and scalable synthesis method, efficient adsorption performance, and excellent reusability showed potential promise for the integrative treatment of complex wastewater bearing both metals and organic pollutants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.