Abstract

Mutual diffusion is investigated by means of experiment and molecular simulation for liquid mixtures containing water + methanol + ethanol. The Fick diffusion coefficient is measured by Taylor dispersion as a function of composition for all three binary subsystems under ambient conditions. For the aqueous systems, these data compare well with literature values. In the case of methanol + ethanol, experimental measurements of the Fick diffusion coefficient are presented for the first time. The Maxwell-Stefan diffusion coefficient and the thermodynamic factor are predicted for the ternary mixture as well as its binary subsystems by molecular simulation in a consistent manner. The resulting Fick diffusion coefficient is compared to present measurements and that obtained from the classical simulation approach, which requires experimental vapor-liquid equilibrium or excess enthalpy data. Moreover, the self-diffusion coefficients and the shear viscosity are predicted by molecular dynamics and are favorably compared to experimental literature values. The presented ternary diffusion data should facilitate the development of aggregated predictive models for diffusion coefficients of polar and hydrogen-bonding systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.