Abstract
Linear and non-linear calibration methods (principal component regression (PCR), partial least squares regression (PLS), and neural networks (NN)) were applied to a slightly non-linear Raman data set. Because of the large size of this data set, recently introduced linear calibration methods, specifically optimised for speed, were also used. These fast methods achieve speed improvement by using the Lanczos decomposition for the singular value decomposition steps of the calibration procedures, and for some of their variants, by optimising the models without cross-validation (CV). Linear methods could deal with the slight non-linearity present in the data by including extra components, therefore, performing comparably to NNs. The fast methods performed as well as their classical equivalents in terms of precision in prediction, but the results were obtained considerably faster. It, however, appeared that CV remains the most appropriate method for model complexity estimation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.