Abstract

The provenance and biochemical roles of eukaryotic MORC proteins have remained poorly understood since the discovery of their prototype MORC1, which is required for meiotic nuclear division in animals. The MORC family contains a combination of a gyrase, histidine kinase, and MutL (GHKL) and S5 domains that together constitute a catalytically active ATPase module. We identify the prokaryotic MORCs and establish that the MORC family belongs to a larger radiation of several families of GHKL proteins (paraMORCs) in prokaryotes. Using contextual information from conserved gene neighborhoods we show that these proteins primarily function in restriction-modification systems, in conjunction with diverse superfamily II DNA helicases and endonucleases. The common ancestor of these GHKL proteins, MutL and topoisomerase ATPase modules appears to have catalyzed structural reorganization of protein complexes and concomitant DNA-superstructure manipulations along with fused or standalone nuclease domains. Furthermore, contextual associations of the prokaryotic MORCs and their relatives suggest that their eukaryotic counterparts are likely to carry out chromatin remodeling by DNA superstructure manipulation in response to epigenetic signals such as histone and DNA methylation.This article was reviewed by Arcady Mushegian and Gaspar Jekely.

Highlights

  • The microchidia gene product (MORC1) was found to be required for the completion of prophase I of meiosis during mammalian spermatogenesis [1]

  • It was noticed that MORC1 was the prototype of a novel family (MORC family) of eukaryotic chromatin proteins which possess a gyrase, histidine kinase, and MutL (GHKL) domain [3,4,5]

  • Based on the evolutionary relationships of the superfamily II (SFII) helicase we identified three major types of predicted operons (Fig. 2): 1) The first set of these encoded Rad25like helicases, which are usually found in type III restriction-modification (RM) systems

Read more

Summary

Introduction

The microchidia gene product (MORC1) was found to be required for the completion of prophase I of meiosis during mammalian spermatogenesis [1]. A multiple alignment of the eukaryotic MORCs with these prokaryotic homologs showed that both versions contained all four conserved motifs required for adenosine and phosphate binding in the GHKL superfamily (Fig. 1).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.