Abstract

Normal human cells replicate their DNA with exceptional accuracy. During every division cycle, each daughter cell receives a full and accurate complement of genetic information. It has been estimated that approximately one error occurs during DNA replication for each 10(9) to 10(10) nucleotides polymerized. Stem cells, the cells that are progenitors of cancer, may replicate their genes even more accurately. In contrast, the malignant cells that constitute a tumor are markedly heterogeneous and exhibit multiple chromosomal abnormalities and alterations in the nucleotide sequence of DNA. To account for the disparity between the rarity of mutations in normal cells and the large numbers of mutations present in cancer, we initially hypothesized that during tumor progression, cancer cells must exhibit a mutator phenotype. In this perspective, we summarize the evidence supporting a mutator phenotype in human cancer, analyze recent measurements of mutations in human cancer, consider the timing for the expression of a mutator phenotype, and focus on the important consequences of large numbers of random mutations in human tumors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.