Abstract
Avian myelocytomatosis virus MC29 induces a wide variety of neoplastic diseases in infected birds and transforms cells of the macrophage lineage as well as fibroblasts and epithelial cells. A biological and biochemical analysis, carried out on a series of in-frame insertion and deletion mutations within the gag-myc gene of MC29, revealed several mutations within the 5' portion of the v-myc gene that encode proteins either completely defective for transformation or compromised in their ability to transform chicken embryo fibroblasts but not macrophages. Mutations within the 3' end of the v-myc gene which disrupt sequences encoding the basic/helix-loop-helix region were defective for transformation of both fibroblasts and macrophages. Eight variants were cloned into the replication-competent avian expression vector RCAS. Analysis of cells infected with transformation-defective, replication-competent viruses confirmed the expression of functionally defective Myc proteins. Further, expression of the transformation defective variant dl91-137 in chicken fibroblasts inhibited subsequent transformation by wild-type MC29. The results reported herein support the hypothesis that Myc proteins function as regulators of transcription in a variety of cell types and clearly point out the necessity of putative regulatory domains within the amino-terminal half of the Myc protein.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.