Abstract

Receptor Interacting Protein Kinase 1 (RIPK1) is a key regulator of innate immune signalling pathways. To ensure an optimal inflammatory response, RIPK1 is post-translationally regulated by well characterised ubiquitylation and phosphorylation events, as well as caspase-8 mediated cleavage1–7. The physiological relevance of this cleavage remains unclear, though it is believed to inhibit activation of RIPK3 and necroptosis8. Here we show that heterozygous missense mutations p.D324N, p.D324H and p.D324Y prevent caspase cleavage of RIPK1 in humans and result in early-onset periodic fever episodes and severe intermittent lymphadenopathy, a condition we designate ‘Cleavage-resistant RIPK1-Induced Autoinflammatory’ (CRIA) syndrome. To define the mechanism for this disease we generated a cleavage-resistant Ripk1D325A mutant mouse strain. While Ripk1-/- mice die postnatally from systemic inflammation, Ripk1D325A/D325A mice died during embryogenesis. Embryonic lethality was completely prevented by combined loss of Casp8 and Ripk3 but not by loss of Ripk3 or Mlkl alone. Loss of RIPK1 kinase activity also prevented Ripk1D325A/D325A embryonic lethality, however the mice died before weaning from multi organ inflammation in a RIPK3 dependent manner. Consistently, Ripk1D325A/D325A and Ripk1D325A/+ cells were hypersensitive to RIPK3 dependent TNF-induced apoptosis and necroptosis. Heterozygous Ripk1D325A/+ mice were viable and grossly normal, but were hyper-responsive to inflammatory stimuli in vivo. Our results demonstrate the importance of caspase-mediated RIPK1 cleavage during embryonic development and show that caspase cleavage of RIPK1 not only inhibits necroptosis but maintains inflammatory homeostasis throughout life.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call