Abstract

In a large-scale mutagenesis screen in the zebrafish, Danio rerio, we have identified a heterogeneous group of 30 recessive, embryonic lethal mutations characterized by degeneration in the developing central nervous system that is either transient or initially localized to one area of the brain. Transient degeneration is defined as abnormal cell death occurring during a restricted period of development. Following degeneration, the affected structures do not appear to regenerate. In each case degeneration is identified after somitogenesis is complete and is not associated with visually identified patterning defects. These 30 mutations, forming 21 complementation groups, have been classified into four phenotypic groups: group 1, transient degeneration (13 mutations); group 2, spreading degeneration, early onset, in which degeneration is initially confined to the optic tectum but subsequently spreads to other areas of the central nervous system (7 mutations); group 3, late-onset degeneration, initially identified after 4 days (6 mutations); and group 4, degeneration with abnormal pigmentation (4 mutations). Although apoptotic cells are seen in the retina and tectum of all mutants, the distribution, temporal progression, and severity of degeneration vary between mutations. Several mutations also show pleiotropic effects, with degeneration involving extraneural structures including the pharyngeal arches and pectoral fins. We discuss some of the pathways important for cell survival in the nervous system and suggest that these mutations will provide entry points for identifying genes that affect the survival of restricted neural populations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call