Abstract

Two types of polymeric post-translational modifications of alpha/beta-tubulin, glycylation and glutamylation, occur widely in cilia and flagella. Their respective cellular functions are poorly understood. Mass spectrometry and immunoblotting showed that two closely related species, the ciliates Tetrahymena and Paramecium, have dramatically different compositions of tubulin post-translational modifications in structurally identical axonemes. Whereas the axonemal tubulin of Paramecium is highly glycylated and has a very low glutamylation content, the axonemal tubulin of Tetrahymena is glycylated and extensively glutamylated. In addition, only the alpha-tubulin of Tetrahymena undergoes detyrosination. Mutations of the known glycylation sites in Tetrahymena tubulin affected the level of each polymeric modification type in both the mutated and nonmutated subunits, revealing cross-talk between alpha- and beta-tubulin. Ultrastructural analyses of glycylation site mutants uncovered defects in the doublet B-subfiber of axonemes and revealed an accumulation of dense material in the ciliary matrix, reminiscent of intraflagellar transport particles seen by others in Chlamydomonas. We propose that polyglycylation and/or polyglutamylation stabilize the B-subfiber of outer doublets and regulate the intraflagellar transport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.