Abstract

The relative mutagenicity, nature of the mutations and the sequence specificity of mutations induced by the bifunctional alkylating agent, phosphoramide mustard (PM) and a monofunctional derivative, dechloroethyl phosphoramide mustard (dePM), were analyzed by the Ames test and by an in vitro shuttle vector mutagenesis assay. Both PM and dePM increased the mutation frequency above background in either assay. However, on an equimolar basis, dePM was less mutagenic than PM. In the in vitro shuttle vector mutagenesis assay, sequencing demonstrated that about 40% of the mutant plasmids contained more than one mutation in the supF tRNA gene segment of the plasmid. About 70% of the mutations observed in dePM-treated plasmids were single base substitutions with A:T and G:C base pairs being mutated at equivalent rates. In contrast, only about 50% of the mutations observed in PM-treated plasmids were single base substitutions, 80% of which involved G:C base pairs. Single base deletions and insertions were found in approximately equal proportions with both compounds; however, these lesions were in greater abundance in PM-treated plasmids. Putative hot-spots for mutation in the supF tRNA gene included base pairs at positions 102 and 110 for PM and positions 170 and 171 for dePM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call