Abstract

The conserved oligomeric Golgi (COG) complex plays essential roles in Golgi function, vesicle trafficking and glycosylation. Deletions in the human COG7 gene are associated with a rare multisystemic congenital disorder of glycosylation that causes mortality within the first year of life. In this paper, we characterise the Drosophila orthologue of COG7 (Cog7). Loss-of-function Cog7 mutants are viable but male sterile. The Cog7 gene product is enriched in the Golgi stacks and in Golgi-derived structures throughout spermatogenesis. Mutations in the Cog7 gene disrupt Golgi architecture and reduce the number of Golgi stacks in primary spermatocytes. During spermiogenesis, loss of the Cog7 protein impairs the assembly of the Golgi-derived acroblast in spermatids and affects axoneme architecture. Similar to the Cog5 homologue, four way stop (Fws), Cog7 enables furrow ingression during cytokinesis. We show that the recruitment of the small GTPase Rab11 and the phosphatidylinositol transfer protein Giotto (Gio) to the cleavage site requires a functioning wild-type Cog7 gene. In addition, Gio coimmunoprecipitates with Cog7 and with Rab11 in the testes. Our results altogether implicate Cog7 as an upstream component in a gio-Rab11 pathway controlling membrane addition during cytokinesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.