Abstract
In an attempt to study the functional role of the positively charged amino acids present in the S4 segment of hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels, we have introduced single and sequential amino acid replacements throughout this domain in the mouse type 2 HCN channel (mHCN2). Sequential neutralization of the first three positively charged amino acids resulted in cumulative shifts of the midpoint voltage activation constant towards more hyperpolarizing potentials. The contribution of each amino acid substitution was approximately −20 mV. Amino acid replacements to neutralize either the first (K291Q) or fourth (R300Q) positively charged amino acid resulted in the same shift (about −20 mV) towards more hyperpolarized potentials. Replacing the first positively charged amino acid with the negatively charged glutamic acid (K291E) produced a shift of approximately −50 mV in the same direction. None of the above amino acid substitutions had any measurable effect on the time course of channel activation. This suggests that the S4 domain of HCN channels critically controls the voltage dependence of channel opening but is not involved in regulating activation kinetics. No channel activity was detected in mutants with neutralization of the last six positively charged amino acids from the S4 domain, suggesting that these amino acids cannot be altered without impairing channel function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.