Abstract

Sequence and structure comparisons with homologous trypsin-like serine proteases have predicted the S1-specificity pocket in picornavirus 3C proteinases. In this study, we examine the putative roles of such residues in poliovirus 3C substrate recognition. Single amino acid substitutions at 3C residues Thr-142, His-161, Gly-163, Gly-164, and Ala-172 were introduced into near full-length poliovirus cDNAs, and protein processing was examined in the context of authentic 3Cciscleavage activity. Our data are consistent with residues Thr-142, His-161, Gly-163, and Gly-164 acting as important determinants of 3C substrate specificity and support published models of 3C protein structure. Anin vivoanalysis of mutant viruses containing individual amino acid substitutions at 3C residues Thr-142 and Ala-172 suggests that such residues are important determinants for viral RNA replication. In addition, bacterially expressed, recombinant 3CD polypeptides containing amino acid substitutions at Thr-142 and Ala-172 show altered RNA binding properties in mobility shift assays that use a synthetic RNA corresponding to the poliovirus 5′-terminal sequences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.