Abstract

Sparsomycin is a universal and powerful inhibitor of peptide bond formation which, in contrast to many other ribosome-targeted antibiotics, does not produce footprints on rRNA. A mutant of an archaeon Halobacterium halobiumhas been isolated that exhibits resistance to sparsomycin. Resistant cells possessed a mutation in the 23 S rRNA, where C2518 (C2499 in Escherichia coli) was substituted by U. Introduction of the C2518U mutation into the chromosomal 23 S rRNA gene of wild-type H. halobiumrendered cells resistant to sparsomycin, demonstrating that a single nucleotide alteration in the rRNA is sufficient to confer resistance. Accordingly, ribosomes containing mutant 23 S rRNA exhibited increased tolerance to sparsomycin in vitro. Mutations of two other nucleotide positions in the peptidyl transferase center, C2471 and U2519 (C2452 and U2500 in E. coli), conferred resistance to low concentrations of sparsomycin. The location of the sparsomycin resistance mutations reveals the possible site of drug binding and/or action. Our findings provide further support for the idea that rRNA may be directly involved in interaction with antibiotics and the catalysis of the peptide bond formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.