Abstract

Mating between haploid, budding cells of the dimorphic fungus Ustilago maydis results in the formation of a dikaryotic, filamentous cell type. Mating compatibility is governed by two mating-type loci called a and b; transformation of genes from these loci (e.g. a1 and b1) into a haploid strain of different mating type (e.g. a2 b2) allows filamentous growth and establishes a pathogenic cell type. Several mutants with a nonmycelial colony morphology were isolated after insertional mutagenesis of a filamentous, pathogenic haploid strain. The mutagenized region in one such mutant was recovered by plasmid rescue and employed to isolate a gene involved in conditioning the mycelial phenotype (myp1). An 1150 amino acid open reading frame is present at the myp1 locus; the predicted polypeptide is rich in serine residues and contains short regions with similarity to SH3 domain ligands. Construction of myp1 disruption and deletion mutants in haploid strains confirmed that this gene plays a role in mycelial growth and virulence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.