Abstract

The MotA protein of Escherichia coli is an essential component of the torque-generating units that drive the flagellar rotary motor. A variety of evidence indicates that MotA is involved in transmembrane proton conduction. We have now mapped a number of MotA mutants, focusing primarily on those previously shown to be dominant. Fifty-six mutations (all dominant), each causing severe or complete impairment of function, were sequenced and found to correspond to 31 different alleles. All except two of these encoded amino acid substitutions clustered in four hydrophobic, presumably membrane-spanning segments, that together make up only one-third of the length of the polypeptide chain. In contrast, eight mutations (5 dominant), each causing only slight impairment of function (slow alleles), were sequenced and found to specify amino acid substitutions in three hydrophilic domains. The clustering of the mutations provides independent support for the suggestion that MotA is a transmembrane proton channel and places significant constraints on models for the molecular mechanism of ion conduction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.