Abstract
During a critical period in the developing mammalian brain, there is a major switch in the nature of GABAergic transmission from depolarizing and excitatory, the pattern of the neonatal brain, to hyperpolarizing and inhibitory, the pattern of the mature brain. This switch is believed to play a major role in determining neuronal connectivity via activity-dependent mechanisms. The GABAergic developmental switch may also be particularly vulnerable to dysfunction leading to seizure disorders. The developmental GABA switch is mediated primarily by KCC2, a neuronal K+/Cl- cotransporter that determines the intracellular concentration of Cl- and, hence, the reversal potential for GABA. Here, we report that kazachoc (kcc) mutations that reduce the level of the sole K+/Cl- cotransporter in the fruitfly Drosophila melanogaster render flies susceptible to epileptic-like seizures. Drosophila kcc protein is widely expressed in brain neuropil, and its level rises with developmental age. Young kcc mutant flies with low kcc levels display behavioral seizures and demonstrate a reduced threshold for seizures induced by electroconvulsive shock. The kcc mutation enhances a series of other Drosophila epilepsy mutations indicating functional interactions leading to seizure disorder. Both genetic and pharmacological experiments suggest that the increased seizure susceptibility of kcc flies occurs via excitatory GABAergic signaling. The kcc mutants provide an excellent model system in which to investigate how modulation of GABAergic signaling influences neuronal excitability and epileptogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.