Abstract
Heterozygous hotspot mutations in isocitrate dehydrogenases (IDH) IDH1 or IDH2 are frequently observed in specific types of cartilaginous tumors, gliomas, and leukemias. Mutant IDH enzyme loses its normal activity to convert isocitrate into α-ketoglutarate (αKG) and instead acquires the ability to reduce αKG to D-2-hydroxyglutarate. Through direct competition with αKG, accumulation of the oncometabolite D-2-hydroxyglutarate in IDH mutated tumors results in inhibition of αKG-dependent dioxygenases involved in DNA and histone demethylation. Apart from epigenetic alterations, perturbations in the tricarboxylic acid cycle (depletion of intermediates) and activation of the intricately linked hypoxia signaling pathway are apparent in IDH mutated cells. As molecular details are being unraveled, the emerging concept is that IDH mutations result in tumor formation by epigenetic alterations that affect gene expression and result in inhibition of cellular differentiation. Activation of hypoxic stress signaling reprograms cellular energy metabolism and promotes anabolic processes and angiogenesis, thus, providing an advantage to promote neoplastic growth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.