Abstract

Reversible ADP-ribosylation of dinitrogenase reductase forms the basis of posttranslational regulation of nitrogenase activity in Rhodospirillum rubrum. This report describes the physiological effects of mutations in the genes encoding the enzymes that add and remove the ADP-ribosyl moiety. Mutants lacking a functional draT gene had no dinitrogenase reductase ADP-ribosyltransferase (DRAT, the draT gene product) activity in vitro and were incapable of modifying dinitrogenase reductase with ADP-ribose in vivo. Mutants lacking a functional draG gene had no dinitrogenase reductase-activating glycohydrolase (DRAG, the draG gene product) activity in vitro and were unable to remove ADP-ribose from the modified dinitrogenase reductase in vivo. Strains containing polar mutations in draT had no detectable DRAG activity in vitro, suggesting likely cotranscription of draT and draG. In strains containing draT and lacking a functional draG, dinitrogenase reductase accumulated in the active form under derepressing conditions but was rapidly ADP-ribosylated in response to conditions that cause inactivation. Detection of DRAT in these cells in vitro demonstrated that DRAT is itself subject to posttranslational regulation in vivo. Mutants affected in an open reading frame immediately downstream of draTG showed regulation of dinitrogenase reductase by ADP-ribosylation, although differences in the rates of ADP-ribosylation were apparent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.