Abstract

The molecular lesions which underlie the resistance of the malaria parasites to atovaquone, a coenzyme Q analogue, were investigated. Resistant clones of Plasmodium berghei ANKA strain were isolated following prolonged propagation in mice in the presence of increasing doses of the drug, and their cytochrome b gene sequenced. Three mutations were detected, T–C substitution at nt 431, G–A at nt 399 and G–T at nt 850, resulting in amino acid changes in the putative cytochrome b product at residues 133, 144 and 284. The V284F amino acid change is in the sixth transmembrane helix of the protein and was observed in all resistant clones. An additional M133I or L144S amino acid change within the Q o site at an extramembranous amphipathic helix significantly increases the resistance to atovaquone. Our results (a) provide evidence that the antimalarial activity of atovaquone indeed involves an interaction with the cytochrome b; (b) define atovaquone as an inhibitor of the ubiquinol oxidase activity of the cytochrome bc 1 complex; and (c) define amino acid residues in the mammalian cytochrome b which might be critical in determining its relative resistance to atovaquone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.