Abstract

A chloramphenicol acetyltransferase (catB7) gene containing two point mutations, 181A/G and 314A/G, has been recently reported to be a determinant for high-level chloramphenicol resistance phenotype in a Pseudomonas aeruginosa strain PAhcr1. The mutant CATB7 was further characterized in vitro and in vivo to elucidate the molecular basis of high-level resistance. CAT assay demonstrated that the mutant and wild-type recombinant CATB7 had similar specific activities. Dot blotting revealed that the accumulated amounts of CATB7 in P. aeruginosa strains PAO1 and PAhcr1 were proportionate to the respective anti-chloramphenicol level. Site-directed mutagenesis showed that G61S and Y105C contributed synergistically to the PAhcr1 resistance phenotype. It could be proposed that the mutant CATB7 was more structurally stable than catalytically efficient as a chloramphenicol resistance determinant in PAhcr1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.