Abstract
The lumenal CD-loop region of the D2 protein of photosystem II contains residues that interact with the primary electron donor P680 and the redox active tyrosyl residue Y(D). Photosystem II properties were studied in a number of photoautotrophic mutants of Synechocystis sp. PCC 6803, most of which carried combinatorial mutations in residues 164-170, 179-186, or 187-194 of the D2 protein. To facilitate characterization of photosystem II properties in the mutants, the CD-loop mutations were introduced into a photosystem I-less background. According to variable fluorescence decay measurements in DCMU-treated cells, charge recombination of Q(A)(-) with the donor side was faster in the majority of mutants (t(1/2) = 45-140 ms) than in the control (t(1/2) = 180 ms). However, in one mutant (named C7-3), the decay of Q(A)(-) was 2 times slower than in the control (t(1/2) = 360 ms). The decay half-time of each mutant correlated with the yield of the Q-band of thermoluminescence (TL) emitted due to S(2)Q(A)(-) charge recombination. The C7-3 mutant had the highest TL intensity, whereas no Q-band was detected in the mutants with fast Q(A)(-) decay (t(1/2) = 45-50 ms). The correlated changes in the rate of recombination and in TL yield in these strains suggest the existence of a nonradiative pathway of charge recombination between Q(A)(-) and the donor side. This may involve direct electron transfer from Q(A)(-) to P680(+) in a way not leading to formation of excited chlorophyll. Many mutations in the CD-loop appear to increase the equilibrium P680(+) concentration during the lifetime of the S(2)Q(A)(-) state, for example, by making the midpoint potential of the P680(+)/P680 redox couple more negative. The nonradiative charge recombination pathway involves a low activation energy and is less temperature-dependent than the formation of excited P680 that leads to TL emission. Therefore, during the TL measurements in these mutants, the S(2)Q(A)(-) state can recombine nonradiatively before temperatures are reached at which radiative charge recombination becomes feasible. The results presented here highlight the presence of two charge recombination pathways and the importance of the CD-loop of the D2 protein in determination of the energy gap between the P680(+)S(1) and P680S(2) states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.