Abstract

Understanding of the structures and functions of the retroviral integrase (IN), a key enzyme in the viral replication cycle, is essential for developing antiretroviral treatments and facilitating the development of safer gene therapy vehicles. Thus, four MLV IN-mutants were constructed in the context of a retroviral vector system, harbouring either a substitution in the catalytic centre, deletions in the C-terminus, or combinations of both modifications. IN-mutants were tested for their performance in different stages of the viral replication cycle: RNA-packaging; RT-activity; transient and stable infection efficiency; dynamics of reverse transcription and nuclear entry. All mutant vectors packaged viral RNA with wild-type efficiencies and displayed only slight reductions in RT-activity. Deletion of either the IN C-terminus alone, or in addition to part of the catalytic domain exerted contrasting effects on intracellular viral DNA levels, implying that IN influences reverse transcription in more than one direction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.